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Abstract. Mapping persistently cloudy tropical landscapes with optical satellite imagery usually requires assembling the
clear imagery from several dates. This study compares methods for normalizing image data when filling cloud gaps in
Landsat imagery with imagery from other dates. Over a complex tropical island landscape, namely St. Kitts and Nevis and
the island of St. Eustatius, all of the methods tested reduce interdate image differences for ETM+ bands 1–5 and 7, NDVI,
and band 4:5 ratio. Regression tree normalization reduces the interdate differences more consistently than linear regression
or histogram matching. Normalizing ETM+ images with regression trees can produce more seamless imagery than linear
normalization, histogram matching, or image-based atmospheric correction via dark object subtraction. More seamless
imagery enhances visual interpretation and helps reveal the distributions of forest formations in these landscapes. Decision
tree classification of cloud-filled Landsat imagery can accurately map land cover and detailed forest formations. Decision
tree classification accuracy is not highly dependent on the method used to make the cloud-filled imagery, however, at least
as long as (i) classification model training data reflect class spectral variability, and (ii) ancillary spatial data that relate to
the distributions of classes are used in the classification. Cloud-filled imagery is also known as cloud-cleared imagery.

Résumé. Les couvertures terrestres sont difficiles à cartographier à l’aide d’imagerie satellite à haute résolution lorsqu’il
s’agit de paysages perpétuellement couverts de nuages. Cette étude compare les différentes méthodes utilisées pour
normaliser les données d’images afin de remplir les trouées de nuages dans les images de Landsat avec des images d’autres
dates. En balayant un paysage complexe d’une île tropicale, toutes les méthodes vérifiées réduisent les différences d’images
entre les dates pour ce qui est des bandes 1 à 5, et 7 ETM+, de l’IVDN et du rapport de bandes 4:5. Pour ces bandes et
indices, la normalisation de l’arbre de régression réduit ces différences plus que la régression linéaire, l’appariement
d’histogrammes. Par conséquent, la normalisation d’images ETM+ à l’aide d’arbres de régression peut produire des images
plus homogènes. Ce genre d’images facilite l’interprétation visuelle et aide à révéler la distribution des formations de forêts
dans ces paysages. La classification basée sur un arbre de décision des images remplies de nuages de Landsat peut dresser
avec précision la carte de la couverture terrestre et les formations de forêts en détail. La précision de la classification basée
sur un arbre de décision dépend peu de la méthode utilisée pour obtenir les images remplies de nuages, cependant, du moins
tant que (i) les données d’apprentissage du modèle de classification reflètent la variabilité spectrale de la classe et tant que
(ii) les données spatiales auxiliaires liées aux distributions des classes sont utilisées dans la classification. On parle parfois
de la notion d’enlèvement des nuages en imagerie de zones couvertes de nuages.

Helmer and Ruefenacht 340Introduction

Persistent cloud cover makes mapping some landscapes with
optical satellite imagery seem daunting. Cloud-free imagery for
one season can require assembling the cloud-free parts of
several scene dates, and the seam lines from different dates are
usually visible in the resulting image mosaics. This study
addresses (i) potential methods for normalizing the Landsat
images that fill clouds in a reference Landsat image, and
(ii) classifying cloud-filled imagery over complex tropical

landscapes with decision trees. Our context is that of
developing an approach to classify Landsat imagery to detailed
land-cover category in persistently cloudy, complex tropical
island landscapes for a multi-organizational project.

The problem with classifying cloud-filled or composite
images is that the spectral signatures of each land-cover class
will vary across such imagery by scene date. The resulting
increase in signature variability increases spectral confusion
among land-cover classes, limiting map accuracy and
classification detail. The variability comes from interdate
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differences in atmospheric conditions, target illumination (sun–
target–sensor geometry), sensor calibration, vegetation
phenology, and soil moisture. These sources of interdate
variability all change image response function (Schott, 1997).
Corrections for atmospheric and illumination differences
reduce interdate image differences, but they do not adjust
differences in vegetation phenology. Image normalization also
reduces interdate differences, but linear methods do not
normalize nonlinear changes in vegetation phenology (Du et
al., 2002). For imagery with coarse temporal resolution, years
might pass before image acquisitions include scenes with both
similar vegetation phenology and clear sky where clouds
obscure land in an initial, reference scene. Because of these
interdate image differences, classifications of image mosaics or
composites often use machine learning classifiers, like neural
networks or decision trees. These classifiers help accommodate
data noise or spectrally heterogeneous classes (Friedl and
Brodley, 1997; Seto and Liu, 2003). Two potential problems
remain, however, when classifying such imagery. First,
machine learning classifiers require that training data reflect
class spectral variability. Training data from a limited number
of field measurements may not always meet this requirement.
Moreover, the limits to which machine learning classifiers can
accommodate spectral heterogeneity have received little study.
Second, interdate image differences, whether from
phenological differences or residual errors after atmospheric
correction, are often still visible in mosaics or composites.
When large, these differences may make visual interpretation
of mosaic imagery inaccurate, negatively impacting
classifications that depend on visual interpretation.

The first specific objective of this study is to compare three
potential methods for normalizing interdate image differences
when filling cloudy areas in Landsat images with imagery from
other dates. These methods include linear histogram matching,
linear regression, and regression trees. Regression trees can
form complex nonlinear relationships (Huang and Townshend,
2003). By forming regression models at the terminal nodes of
decision trees, they have the potential to partition the
relationships between spectral bands in differently dated scenes
into sets of relationships for each band. Consequently, we
hypothesize that they will more closely match vegetation
phenology in images from different dates. Our second objective
is to learn whether normalizing images to fill cloudy areas in
reference scenes, which will presumably enhance visual
interpretation, results in imagery that permits accurate mapping
of land cover and detailed forest formations in a complex
tropical landscape. We hypothesize that classifying cloud-filled
imagery with decision trees will be accurate as long as
(i) training data fully represent class variability, and
(ii) ancillary geographical data are included with spectral bands
in classifying the imagery. We also expect that having at least
two cloud-filled images, each from a different season, will
improve the classification.

Although many tropical islands are small, this study
addresses Landsat imagery because it is nevertheless relevant
for these landscapes. First, Landsat imagery has short-wave

infrared bands that can be critical to mapping woody vegetation
attributes in mountainous tropical landscapes (Helmer et al.,
2000). Second, time series of imagery are sometimes critical to
mapping certain land-cover and woody vegetation attributes
and land-cover change. Time series of very fine spatial
resolution imagery can become prohibitively expensive. Third,
using Landsat imagery for mapping allows us to use satellite
imagery with very fine spatial resolution for accuracy
assessment. Lastly, not all complex tropical landscapes are
small in area. Using very fine spatial resolution satellite
imagery for land-cover and forest formation mapping over
larger complex areas may be impractical for some time.

Importance of remote sensing methods focused on
complex tropical landscapes

This study focuses on complex tropical landscapes, which
we define as those that extend over several different forest
formations (physiognomic and environmental) or forest types
(compositional). In many tropical regions, for example,
landscapes extend from lowland dry or moist areas to
mountainous wet areas over short distances. The distances are
particularly short on tropical islands. These landscapes
compound the challenge of assembling imagery and classifying
vegetation types over areas where clouds are persistent (Helmer
et al., 2002). Over areas smaller than that of one Landsat scene,
woody vegetation formations can change from drought
deciduous woodlands and shrublands to semideciduous,
evergreen, and cloud forests. Forest deciduousness timing,
intensity, and spatial distribution can also vary from year to
year. Moreover, tree species assemblages and forest formations
do not necessarily vary continuously with climate, elevation, or
geology. One reason is that disturbance also affects their
distribution. In dry and dry–moist zones, for example, more
recently disturbed tropical forest stands are more deciduous
than nearby older forest (Condit et al., 2000; Arroyo Mora et
al., 2005). At higher elevations, elfin cloud forest tree species
may colonize disturbed lands at lower elevations instead of the
species that compose adjacent older, taller cloud forest
(Kappelle et al., 1995). Where biophysical factors do not
predict the distributions of different forest formations because
of disturbance, forest spectral response in satellite imagery may
become more important when mapping forest types. Because
forest types can vary similarly with elevation and disturbance in
temperate landscapes, work in complex tropical landscapes has
broader relevance.

Overcoming the remote sensing challenges that complex
tropical landscapes pose is important for biodiversity
conservation. Most gaps in the global network of protected
areas are montane or insular regions in the tropics (Rodrigues et
al., 2004). Conservation planning usually starts with mapping
the distributions of different habitats, like different forest
formations, by classifying Landsat satellite imagery (Scott et
al., 1993). Although islands can be small, seven of 25 global
“biodiversity hotspots” that Myers et al. (2000) identified are
tropical islands or island chains. Nearly half of all these
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hotspots include complex tropical landscapes with mountains.
Most tropical islands are biodiversity hotspots because high
species endemism combines with extensive habitat loss. The
Caribbean region, the location of this study, is one of the
“hottest hotspots”. About 11.3% of the original primary
Caribbean vegetation contains 2.3% and 2.9% of the world’s
endemic plants and vertebrates, respectively (Myers et al.,
2000). Lowland and coastal ecosystems are relatively
unprotected. At the same time, lowland ecosystems are subject
to intense land development pressure (Lugo et al., 1981;
Helmer, 2004). Remote sensing research can bias toward
temperate or topographically simple continental sites (Castro et
al., 2003). The problem of radiometric differences between
satellite images captured on different dates exemplifies this
tendency. Related work on simpler landscapes may not solve
the problems specific to complex ones.

Background
Merging Landsat image dates across space

One solution to persistent cloud cover is compositing
imagery with algorithms that select and merge across space
pixels that are most likely to be cloud free. This solution is
common with high temporal resolution imagery; image dates in
these composites typically span short time periods of 5–32 days
(Holben, 1986; Cihlar et al., 1996). The short time periods
minimize phenological differences between input scenes. The
daily or bi-daily image acquisition that consistent phenology
requires for a composite is only widely available, however, for
imagery with high temporal resolution (but coarser spatial
resolution). The interdate differences across an image
composite can also still complicate a classification. A few
studies classify merges across space of images with coarser
temporal resolution that span longer time periods. They address
large image mosaics of Landsat imagery that join scene
footprints after histogram matching (Homer et al., 1997) or
atmospheric correction (Pax-Lenney et al., 2001). As with
image composites, machine learning algorithms can accurately
classify large mosaics or time series of mosaics to map land-
cover (Vogelmann et al., 2001; Homer et al., 2004) or forest-
cover change (Woodcock et al., 2001). Another example of
filling gaps in imagery comes from filling scan gaps in SLC-off
Landsat enhanced thematic mapper plus (ETM+) scenes, which
are scenes dated after the scan line corrector (SLC) failed on the
Landsat-7 instrument (Howard and Lacasse, 2004). Localized
linear histogram matching normalizes one or more subject
scene dates of thematic mapper (TM) or ETM+ imagery, which
are SLC-on scenes, to fill scan gaps in a reference scene, which
in this case is the SLC-off scene. The method predicts the
digital number (DN) of each scan-gap pixel from the mean DN
of a 17 pixel window in an SLC-on scene that is centered on the
gap pixel. It corrects for differences in DN range and bias over
the window from pixels that the two scenes have in common.
The nonzero pixels of the SLC-off scene are present on the
edges of the 17 pixel window (Scaramuzza et al., 2004). In

applying a separate local histogram match for each pixel, the
procedure is a type of nonlinear normalization when its image-
wide effect is considered. Unlike cloud elements, though, the
scan gaps are narrow and have fairly regular spacing. Although
effective, the current method for producing gap-filled ETM+
imagery requires fairly clear imagery, in part because cloud
spatial patterns are irregular. Because of that cloud pattern
irregularity, this study only compares methods that use all
overlapping, mutually clear pixels to estimate normalization
models that may reduce interdate differences.

Only one related study considers imagery with coarser
temporal resolution over persistently cloudy tropical
landscapes. That recent work (Helmer and Ruefenacht, 2005)
uses regression trees, which are nonlinear, to reduce interdate
image differences between Landsat scenes. It then mosaics the
cloud-free parts of images across space. It shows that two
temporal end points of such cloud-filled imagery can support
accurate urban change detection with a simple linear classifier.
That study only estimates average error in the regression tree
matching by band across the entire mosaic. It does not analyze
errors by land-cover class, nor does it compare the regression
tree approach with other approaches, as in this study. Moreover,
it addresses only non-subtle change detection. In contrast, this
study addresses classification to detailed forest formation.

Relative normalization of imagery

Previous work uses various methods to reduce radiometric
differences between differently dated scenes. These methods
may also permit subject image data to more seamlessly fill
cloud gaps in reference scenes. The methods include absolute
atmospheric correction and relative radiometric normalization.
Atmospheric correction corrects for interdate differences in
atmospheric optical depth, commonly converting image DNs to
reflectance at the Earth surface. Relative radiometric
normalization calibrates images to each other via the
relationships between pixels from differently dated scenes.
Usually relative radiometric normalization applies one
normalization model across the entire scene for each date and
for each band. Most previous work on relative radiometric
normalization focuses on normalizing scenes in a time series to
each other or to one reference scene in a way that avoids
obscuring change detection (Schott et al., 1988; Vogelmann,
1988; Olsson, 1993; Song et al., 2001; Du et al., 2002).
Consequently, these applications do one or more of the
following: (i) only estimate normalization models from pixels
of “spectrally invariant” features like man-made structures;
(ii) exclude pixels that have changed land cover; (iii) use only
same-season imagery; (iv) or use only linear models.

The landscape in this study includes both deciduous and
evergreen forest types and cultivated lands and pastures.
Consequently, we make separate cloud-filled images for each
of two stages in vegetation phenology, namely when deciduous
forest trees are leaf-on and when they are leaf-off. Presumably,
stacking images from different stages in vegetation phenology
may help distinguish classes. Such imagery has been referred to
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as multiseason imagery. It might merge, for example, the six
optical bands from three Landsat ETM+ scenes to form an 18
band image. The 18 band image might include leaf-off, green-
up, and peak growing season data. Previous work has shown
that in temperate landscapes such multiseason satellite imagery
can improve land-cover classifications (Lo et al., 1986;
Schriever and Congalton, 1995; Wolter et al., 1995). Cloud-
free imagery is most commonly available during the middle of
each dry season, which is when drought deciduous vegetation
may be greened up. However, the availability of cloud-free
imagery over a year varies.

Methods
Overview

To compare potential methods for normalizing imagery that
fills cloud gaps, we compared how closely the methods
matched the spectral signatures of land-cover and forest
formation classes in Landsat scenes from different dates. In
other words, we analyzed the differences between reference-
scene signatures and signatures for corresponding pixels in
other scenes after normalization to the reference scene. We
separately compared these differences by land-cover class. For
example, we compare results for evergreen forest, drought
deciduous forest, and agriculture. These three classes have
different seasonal patterns in vegetation phenology. That is,
they differ in the degree and direction of spectral change over
time. In addition to comparing the mean absolute differences
between reference and normalized imagery, we also present
visual comparisons of cloud-filled images. Lastly, we
compared the accuracies of classifying cloud-filled imagery
developed with the different methods.

Study area

The country of St. Kitts and Nevis and the island of St.
Eustatius, which is one of the Netherlands Antilles, are
Leeward Islands in the Caribbean Lesser Antilles (Figure 1).
They occupy a portion of Worldwide Reference System (WRS)
path 002, row 048. Together these three islands occupy about
290 km2. These islands include many of the land-cover types
and forest formations found on other islands of the Lesser
Antilles, yet they are relatively small. These two attributes
make the islands a good area for testing methods to map land
cover in the Lesser Antilles. Consequently, we used these
islands for developing methods in support of a multi-
organizational project. The project goal is to classify Landsat
images to land cover and detailed forest formation for most
islands in the region.

Each of the three islands has one or more mountains of
volcanic origin, and elevations range from sea level to about
1156 m. Interactions between this topography and trade winds
from the northeast have yielded complex natural vegetation.
Woody vegetation formations range from subtropical drought
deciduous and semideciduous woodlands and forest, including
mosaics of xeric coastal formations that have evergreen,

deciduous, or mixed forest and shrublands, to more humid
broadleaf subtropical evergreen forests including cloud forests.
Drought deciduous woody vegetation includes woody
formations in which at least 75% of woody canopy trees are
deciduous. About 25%–75% of canopy trees are deciduous in
semideciduous forest, and at least 75% of canopy trees are
evergreen in seasonal evergreen and evergreen forest (sensu
FGDC, 1997). Drought deciduous woodlands include lands
with >25% canopy cover of drought deciduous shrubs or trees,
which are often leguminous and thorny, and an understory of
grasses and forbs that fire or grazing maintain. If these
disturbances cease, drought deciduous woodlands succeed to
drought deciduous forest, and they may eventually succeed to
semideciduous or mixed coastal forests.

Relative normalization for filling clouds in base scenes:
overview

We selected Landsat-7 ETM+ image dates based on the goal
of developing two final cloud-filled images for the study area.
Each of the two cloud-filled images would have drought
deciduous woody vegetation in a different stage of phenology.
Another goal was to minimize the number of scenes that would
compose each cloud-filled image. Presumably, a smaller
number of image dates should limit the spectral variability of
each land-cover class. Using these criteria, the image dates that
we selected were the four clearest scenes available at the time
of the study that together would (i) yield the most cloud-free
area over the islands, (ii) include some clear areas in common
(for estimating the normalization models), and (iii) form the
two cloud-filled images. Because phenology varies from year
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to year, as mentioned previously, the overlay order of the
various image dates in each cloud-filled image was not based
on date alone. The four scenes are dated 12 December 1999,
5 September 2000, 11 September 2002, and 2 February 2003
(Table 1). Georeferencing for the two earliest scenes included
terrain correction that corrected parallax error from local
topographic relief with a digital elevation model (Level 1T,
http://landsat7.usgs.gov/productinfo.html). They coregistered
to within one 30 m pixel, which additional coregistration could
not improve. We manually collected ground-control points to
coregister the two later scenes to the least cloudy, earliest scene.

Drought deciduous woody vegetation is mostly in a leaf-on
stage in the earliest scene, and lowland pasture is greened up
except in the driest areas (leaf-on scene). This fairly clear scene
served as the reference scene for the cloud-filled image with
leaf-on drought deciduous woody vegetation. The second scene
was the primary scene that filled cloudy areas for the leaf-on
cloud-filled image. Its overall phenology was closest to that of
the reference leaf-on scene. Drought deciduous forest is leaf-on
in this second scene, though some xeric coastal forest and
drought deciduous woodlands are leaf-off (partially leaf-on
scene). For the cloud-filled image with deciduous woody
vegetation in a leaf-off stage, the most cloud-free of the two
leaf-off scenes was used as the reference scene. Drought
deciduous forests, woodlands, and shrublands are all leaf-off in
these latter scenes, and pasture grass is senescent (except in
humid zones at high elevations) (Table 1).

A few cloud gaps remained after mosaicking cloud-free parts
from the initial reference and subject scenes for each of the two
cloud-filled images (one leaf-on and one leaf-off). Most of the
remaining cloud gaps were filled with data from the other two
image dates that were normalized to the appropriate reference
scene in the overlay order shown in Table 1. Normalizing three
image dates to each of the two reference scenes resulted in a
total of six subject-to-reference scene pairs. For example, in the
case of the leaf-on scene being the reference scene, each of the

three later scenes underwent normalization to that reference
scene. Each subject-to-reference scene pair underwent each of
three different normalization methods that we detail later:
regression trees, linear regression, and histogram matching.
The average absolute differences between reference scene
pixels and normalized or atmospherically corrected subject
scene pixels were then compared for different vegetation types.
We also visually compared the mosaics with each other and
with mosaics assembled from images that underwent simple
image-based atmospheric correction. We rescaled the
estimated reflectance values to an eight-bit scale comparable to
the other DN ranges.

The relative normalization approaches that we compare
assume that each reference image and subject image have some
cloudless areas in common. Each approach separately models
the relationship between one band in a reference scene and one
or more bands in a subject scene. These models allow subject
scene data to predict reference scene data from all pair-specific,
mutually clear pixels. To find overlapping cloud-free pixels, we
first made cloud and cloud shadow masks (cloud – shadow
masks) and then masked most ocean water. The union of the
cloud – shadow masks from each reference–subject scene pair
then masked both scenes, which revealed where both scenes are
cloud free. After estimating the normalization models, we
applied them to all cloud-free parts of each subject scene to
compare the signatures of mutually cloud-free areas. To
construct cloud-filled imagery, normalized subject scene data
fill cloudy areas in reference scenes. The subject scene that was
phenologically most similar to the reference scene fills cloudy
areas first, as mentioned earlier. Data from other normalized
subject scenes fill remaining cloudy areas (Table 1).
Comparisons of class spectral signatures focus on the two
clearest reference scenes and their differences with normalized
subject scenes. To gauge the effect of cloud cover amount,
however, comparisons of classification accuracy include mosaic
images that used the two cloudiest scenes as reference scenes.
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Phenology of
drought deciduous
woody vegetationa

Phenology of
pasture or grass
in lowlands

Reference scene
date (top)

Overlay order of subject scenes
(by scene date) for multipart imageb

Cloud-obscured
land cover (%)

Reference scenes for cloud-filled images with fewest clouds in each reference scene
Leaf-on Mostly green 12 Dec. 1999c 5 Sept. 2000 – 2 Feb. 2003 – 11 Sept. 2002 9.1
Leaf-off Senescent 11 Sept. 2002d 2 Feb. 2003 – 5 Sept. 2000 – 12 Dec. 1999 20.7

Reference scenes for additional cloud-filled images
Partially leaf-one Senescent 5 Sept. 2000 12 Dec. 1999 – 11 Sept. 2002 – 2 Feb. 2003 36.5
Leaf-off Senescent 2 Feb. 2003 11 Sept. 2002 – 12 Dec. 1999 – 5 Sept. 2000 50.7

aDrought deciduous woody vegetation includes drought deciduous woodlands, drought deciduous forest, and those xeric coastal forest patches that are drought
deciduous. The xeric coastal forests include various mixtures of sclerophyllous evergreen, deciduous, and succulent woody species, as well as grasses.

bThe subject images are given in order of overlay as second – third – fourth (bottom).
cReference–subject scene pairs in mosaic with 12 Dec. 1999 scene as reference scene: 12 Dec. 1999 – 5 Sept. 2000, 12 Dec. 1999 – 2 Feb. 2003, and

12 Dec. 1999 – 11 Sept. 2002.
dReference–subject scene pairs in mosaic with 11 Sept. 2002 scene as reference scene: 11 Sept. 2002 – 2 Feb. 2003, 11 Sept. 2002 – 5 Sept. 2000, and

11 Sept. 2002 – 12 Dec. 1999.
eDrought deciduous forest is generally greened up, but woodlands and some xeric coastal forest patches are not.

Table 1. Vegetation phenology of scene dates for Landsat ETM+ scenes in this study and overlay order of subject image data used to fill
clouds in cloud-filled images constructed for a given reference scene date.



Regression tree models

As mentioned previously, the normalizations model the
relationships between each band in a reference scene and one or
more bands in a subject scene. The resulting models then
predict new values of subject scene pixels that are calibrated to
the reference scene. For regression tree normalization, earlier
work indicated that models with many predictor bands had less
error (Helmer and Ruefenacht, 2005). Consequently, the
regression tree model for each band and reference–subject
scene pair has the following general form:

yrefi = f(xsubj1, xsubj2, xsubj3, xsubj4, xsubj5, xsubj7) (1)

where yrefi is the DN of a pixel in the reference scene for the ith
band to be predicted; and xsubj1–xsubj5 and xsubj7 are the DNs of
ETM+ bands 1–5 and 7, respectively, of the corresponding
pixel in the subject scene. After estimating a model from
reference and subject scene areas that are mutually clear, the
model can estimate new DNs for locations with clear subject
scene data but obscured or absent reference scene data as
follows:

ymatchi = f(xsubj1, xsubj2, xsubj3, xsubj4, xsubj5, xsubj7) (2)

In the procedures, overlapping clear areas first supply bands
for six new images, one for each optical band of the reference
scene (Helmer and Ruefenacht, 2005). Each of the six images
contains the dependent and independent variables for a
regression tree model that predicts one of the reference scene
bands, as in Equation (1). For example, the image for the model
to predict band 1 in the reference scene will have the following
seven bands: yref1, xsubj1, xsubj2, xsubj3, xsubj4, xsubj5, and xsubj7,
where the notation is the same as that for Equation (1). The
procedure uses an ERDAS Imagine interface to export each of
these seven-band images to an ASCII file formatted for the
regression tree software Cubist (www.rulequest.com). In
formatting the data for Cubist, each row represents one pixel
location and contains comma-separated brightness values for the
band that is the dependent variable and the six bands that are the
independent variables. The next step is to develop regression tree
models for the bands within the regression tree software. We
then apply each regression tree model to all clear subject scene
areas. Integrating public domain code (www.rulequest.com) into
an Imagine program, with the Imagine C Developer’s Toolkit
(Leica Geosystems GIS & Mapping, LLC, 2003), enabled
Imagine to interpret and apply the six regression tree models that
predicted new DNs for each pixel.

Linear models

We developed linear regressions with all mutually clear
image pixels, rather than excluding from that pixel set areas of
marked change as in some previous work (Song et al., 2001),
because using all image pixels is more adaptable to fully
automated cloud-filled image production. The linear relative
normalization models consequently used the same sets of

mutually cloud-free pixels as the regression tree models, but
they had the following general form:

yrefi = f(xsubji) (3)

where yrefi and xsubji are brightness values for the ith band from
pixels in the reference and subject scenes, respectively; and the
function f(xsubji) is linear. Equation (3) then estimates each
radiometrically normalized pixel, ymatchi:

ymatchi = f(xsubji) (4)

With linear regression models, Olsson (1993) found that
using several subject image bands to predict each reference
image band only slightly improved calibration models, and
most previous applications limit the independent variables in
linear normalization models to one corresponding subject
image band. Some applications replace xsubji in Equations (1)
and (2) with principal component axes of (i) multiple bands
from the subject scene (Olsson, 1993) or (ii) a single band from
multiple dates (Du et al., 2002).

Histogram matching

Histogram matching determines a look-up table for each
image band that cross-references an output, matched DN for
each subject image input DN. The matching equates the
cumulative distribution functions of the reference and subject
image histograms, which reveals a reference image DN to
assign to subject image pixels on their conversion back to a
frequency distribution (Richards, 1993). For histogram
matching, we used an ERDAS Macro Language program,
Image Match (Helmer and Ruefenacht, 2005). This program
first matches only the histograms from overlapping parts of the
subject and reference images using the ERDAS
RASTERMATCH function (Leica Geosystems GIS &
Mapping, LLC, 2003), which is a linear histogram match. It
then uses the resulting output look-up table to assign a
histogram-matched DN to each DN in the entire subject image.
The advantage of Image Match is that it yields more closely
matched histograms. By initially matching only image overlap
areas, which by definition have equal pixel numbers and cover
similar terrain, the histogram matching algorithm outputs look-
up tables that have avoided scaling errors and minimize errors
from differences in histogram shape.

Atmospheric correction

Atmospheric correction provides here a baseline when
visually comparing the different image normalization
approaches and when comparing overall classification
accuracies because differences in vegetation phenology should
not influence the correction. We applied a simple image-based
approach to atmospheric correction, called dark object
subtraction (DOS) (Chavez, 1996), to all image dates.
“Minimum” DN values were selected from the histogram for
each band at the point just before the histogram rises sharply,
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and they had at least 100 pixels less than or equal to their value.
A 100 pixel minimum was appropriate because the study area
represented only a portion of a Landsat scene. Digital numbers
that had 500–1000 pixels less than their value, which may be
more appropriate for full Landsat scenes, were well above the
lower inflections of the histograms for each band. As
mentioned, we rescaled the resulting reflectance values to an
eight-bit scale to make them visually comparable to the other
cloud-filled images.

Reference data

We collected three sets of reference data locations for
analyses. First, classification-training data identified land cover
or vegetation formation of 25 to >100 multipixel patches in the
satellite imagery. We distributed the training data throughout
the extent of each class, including in cloud-filled areas. Field-
based training data collection occurred from 8 to 21 January
2003. It relied on simultaneously observing land cover and
forest formation both in satellite imagery and in the field by
integrating a global positioning system (GPS) receiver with a
laptop computer (with a daylight-viewable image display)
running the ERDAS Imagine GPS tool (Leica Geosystems GIS
& Mapping, LLC, 2003). We supplemented these field data by
visually interpreting several pan-sharpened, false color
IKONOS images dated around the year 2000. The resulting
dataset trained a See5 (www.rulequest.com) decision tree
model that classified a stack of raster data, yielding a land
cover – forest formation map for the islands that we manually
edited to make as accurate as possible. The raster data included
the two cloud-filled images built from the two clearest
reference scenes, one leaf-on and one leaf-off, and several
layers of ancillary data (see next section).

The second reference dataset came from a stratified random
sample of the map mentioned in the previous paragraph of 500
pixel locations per land-cover or forest formation class. This
dataset supplied data for comparing normalized subject image
signatures to corresponding reference image signatures. Third,
a similar stratified random sample of about 50 pixels per class
provided data for estimating the accuracies of classifying
various stacks of cloud-filled images. We identified the actual
land cover or forest formation of these pixels by visually
interpreting the IKONOS imagery. For comparing the
accuracies of classifying the different cloud-filled images, no
manual editing was applied.

Evaluation of normalization methods

Three steps assessed the effects of the different
normalization methods for viewing and classifying cloud-filled
imagery. The first step compared reference image pixels and
corresponding normalized or non-normalized subject image
pixels. Second, we present visual comparisons of cloud-filled
images developed using different normalization methods and
DOS atmospheric correction. Third, we classify the cloud-
filled images developed using the different methods and
compare the resulting classification accuracies.

The reference dataset that randomly selected 500 pixels per
class provided data for comparing mean differences between
reference images and normalized subject images. For each
reference–subject image pair, the actual number of
observations is less than 500 because the analysis dropped
observations that were not mutually clear. We performed one
analysis of variance (ANOVA) with multiple comparisons of
means (MCM) for each unique combination of ETM+ band or
index, land-cover class, and reference–subject image pair. The
explanatory variable of “method” for each ANOVA had four
possible conditions: no normalization or correction, linear
regression normalization, image match histogram matching, or
regression tree normalization. The ETM+ bands–indices
included bands 1–5 and 7, the normalized difference vegetation
index (NDVI), and the band 4:5 ratio. The NDVI gauges
vegetation greenness, and the band 4:5 ratio is sensitive to
forest structure and successional stage (Fiorella and Ripple,
1993), including in tropical landscapes (Helmer et al., 2000).
The eight bands, when multiplied by 10 classes and by six
reference–subject image pairs, resulted in 480 ANOVAs for
comparing mean absolute differences.

To learn how the normalization method affected
classification accuracy, we used the training data locations to
classify cloud-filled images. This step classified single cloud-
filled images or stacks of cloud-filled images with their own
signatures. As mentioned previously, the training data
represented the extent of each class, including in cloud-filled
areas. The data trained a See5 decision tree classification model
based on Landsat bands 1–5 and 7 from one or more cloud-
filled images and the ancillary raster data. The ancillary data
included distance to primary road, distance to coast, distance to
ravine, a discrete variable that distinguished each island, and
topographic variables from Shuttle Radar Topography mission
data (Farr and Kobrick, 2000). Topographic variables included
elevation, slope, slope position, aspect, average aspect over
510 m (to yield topographic facet relative to the direction of
trade winds), and topographic shading based on the sun
elevation and azimuth of each reference image (Leica
Geosystems GIS & Mapping, LLC, 2003). The accuracy
assessment dataset supported estimates of Kappa coefficients
of class agreement (Cohen, 1960). Preliminary work showed
that classifying the cloud-filled images to detailed woody
formation was inaccurate without ancillary data, yielding
Kappa coefficients <0.6.

Results
Radiometric normalization methods significantly reduce the

mean absolute differences between reference scene pixels and
corresponding pixels from subject scenes that may be used to
fill cloud gaps, as expected (Figure 2, see description later in
this section). In addition, regression tree normalization most
consistently yields the smallest significant differences between
reference and subject images in ETM+ bands 1–5 and 7, NDVI,
and the band 4 to band 5 ratio. These conclusions are based on
the MCM tests (Figure 2) and the graphs of selected
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Figure 2. Results from 480 ANOVAs to compare normalization results. Each square outlined by a bold line shows results for one band and
one class for each of six separate multiple comparisons of means (MCMs). The six MCMs result from the six reference–subject image pairs
that fill clouds in the two cloud-filled images in Figures 4 and 5 (three pairs for the leaf-on imagery in Figure 4 and three pairs for the leaf-
off imagery in Figure 5). The four small columns in each bold-outlined square are the four explanatory variable conditions: no normalization
or correction (N), linear regression normalization (LR), image match histogram matching (IM), or regression tree normalization (RT). Shaded
squares indicate which conditions yielded the smallest significantly different group of means for each MCM (for the particular band, class,
and reference–subject image pair). Reference–subject scene pairs 1–6 are as follows: 1, 11 Sept. 2002 – 2 Feb. 2003; 2, 11 Sept. 2002 – 5 Sept.
2000; 3, 11 Sept. 2002 – 12 Dec. 1999; 4, 12 Dec. 1999 – 2 Feb. 2003; 5, 12 Dec. 1999 – 5 Sept. 2000; 6, 12 Dec. 1999 – 11 Sept. 2002.



differences (Figure 3). Visually evaluating the different cloud-
filled images is consistent with the MCM results (Figures 4, 5).
When subject image data that fill cloud gaps in a reference
image undergo normalization with regression trees, the
resulting cloud-filled imagery is more seamless than when
images undergo histogram matching or linear regression
normalization. This trend is most apparent for vegetation that
undergoes marked phenological change (including sugar cane,
pasture, drought deciduous woodland, and drought deciduous
forest) than for evergreen or mixed forest formations. Cloud-
filled imagery made with all the normalization approaches,
especially regression tree normalization, is also more seamless
than when reference and subject scenes both undergo DOS

atmospheric correction, including for ETM+ bands 1, 2, and 7,
in addition to bands 3, 4, and 5 displayed in Figures 4 and 5.
Normalizing image data with regression trees helps to match
the phenology of vegetation in scenes that have fairly different
phenology (Figure 6).

Although Figure 2 is detailed, its shading strategy is meant
to convey the overall results of the 480 MCMs without the need
to evaluate each individual result. Each square outlined by a
bold line in Figure 2 shows results for each of the six separate
MCMs for one band and one class. The six MCMs are for the
six different reference–subject image pairs, which are labeled
as small rows one through six. The shaded cells in each small
row indicate which methods are in the smallest significantly
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Figure 3. Mean absolute differences and 95% confidence intervals for Landsat ETM+ band 3 (a and
b), band 4 (c and d), and band 5 (e and f) for two reference–subject image pairs, including 12 Dec.
1999 – 11 Sept. 2002 (leaf-on to leaf-off) and 11 Sept. 2002 – 12 Dec. 1999 (leaf-off to leaf-on) for
the following classes: barren (BARREN), high-density urban (URBAN), sugar cane (CANE), pasture
and other grass (PASTURE), drought deciduous woodland (DDWOODL), drought deciduous forest
(DDFOR), mixed coastal forest (MXCFOR), semideciduous forest (SDECIDFOR), evergreen and
seasonal evergreen forest (EVSEFOR), and cloud forest (CLDFOR). Mean differences after the
following treatments are shown: regression tree normalization (REGR TREE), image match
histogram matching (IMATCH), and linear regression normalization (LINREGR).



different group of mean absolute differences between reference
and subject images. For example, all of the six MCM results for
ETM+ band 1, class barren, are in the upper left bold-outlined
square of Figure 2. The four small columns in each bold-
outlined square are the four explanatory variable conditions,
namely no normalization or correction (N), linear regression
normalization (LR), image match histogram matching (IM), or
regression tree normalization (RT). The MCM result for the
first image pair (row 1) is that two of the normalization
approaches (LR and RT) yielded reference–subject image
differences that are significantly smaller than no normalization
or image match histogram matching. However, the mean
differences from the regression tree and linear regression
normalization methods are not significantly different from each

other. Consequently, the two small squares in small row one
under those methods are shaded. The pattern of shading in
Figure 2 shows that the RT columns, in the far right of each
bold-outlined column, are all shaded except in a few cases. The
RT columns are most often the only ones shaded for
agricultural, grassland, and deciduous woody classes, which
are the most phenologically variable.

Another way of viewing this information is by graphing
mean absolute differences between subject and reference
images as in Figure 3. The data in Figure 3 are a subset of the
comparisons in Figure 2, and they compare the same two
reference–subject image pairs, in bands 3, 4, and 5, as
compared in Figure 6. Again in Figure 3, the smallest
differences between reference and subject images tend to be for
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Figure 4. The island of Nevis, with Landsat ETM+ bands 3, 4, and 5 displayed in red, green, and blue, respectively, in the clearest leaf-on
scene (12 Dec. 1999) with (a) clouds masked and (b–f) clouds filled by other image data that were subject to no normalization or atmospheric
correction (b), atmospheric correction with dark object subtraction (c), normalization with linear regression (d), normalization with image
match linear histogram matching (e), and regression tree normalization (f). Table 1 gives the overlay order (top to bottom) of image dates.
Color tables are identical for all image data.



subject images that underwent regression tree normalization,
especially for the phenologically most variable classes.

The accuracies of classifying the cloud-filled images
developed with various methods do not significantly differ, as
gauged with the Kappa coefficient (Table 2). This result is at
first counterintuitive. Apparently, if classifications use decision
trees, ancillary data, and well-distributed training data that
include cloud-filled pixels, the different approaches to
normalizing the image data that fill cloud gaps in these
landscapes do not significantly affect overall classification
accuracy. Classifications of cloud-filled reference scenes with
less initial cloud cover tend to be more accurate than if
reference scenes are cloudier, but the differences between
Kappa coefficients are not significant for this landscape

(Table 2). These results are not likely to be artifacts of the
accuracy assessment data because the maps resulting from the
various classifications did not greatly differ.

Having cloud-filled images from two different stages of
vegetation phenology (multiseason imagery) greatly enhances
the ability to distinguish different types of deciduous forest
when collecting training data. The multiseason imagery does
not significantly improve overall classification accuracy in this
particular landscape. However, per-class accuracies for
selected image combinations and normalization methods
(Table 3) suggest that the main difference between
classifications that use one image date and those that use two
dates is that producer’s accuracy increases slightly with
classifications that use two image dates for some
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Figure 5. The island of Nevis, with Landsat ETM+ bands 3, 4, and 5 displayed in red, green, and blue, respectively, in the clearest leaf-off
scene (11 Sept. 2002) with (a) clouds masked and (b–f) clouds filled by other image data that were subject to no normalization or atmospheric
correction (b), atmospheric correction with dark object subtraction (c), normalization with linear regression (d), normalization with image
match linear histogram matching (e), and regression tree normalization (f). Table 1 gives the overlay order (top to bottom) of image dates.
Color tables are identical for all image data.



phenologically variable classes: pasture, drought deciduous
woodland, and semideciduous forest (though accuracy slightly
decreases for some other classes). In addition, with two image
dates, slight increases in per-class accuracy are more common
for classifications that use normalized imagery than when
images are not normalized. However, the differences in per-
class accuracies vary by class, indicating that the differences in
overall classification accuracy between normalization methods
will depend on the landscape under study.

Discussion
When filling cloudy areas in Landsat imagery with imagery

from other dates, normalizing subject to reference scene data
reduces interdate image differences. Normalization results in
more seamless cloud-filled imagery than simple DOS
atmospheric correction of reference and subject scenes. This
result holds for all ETM+ bands in this Caribbean island
landscape. Regression tree normalization tends to reduce these
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Figure 6. The island of Nevis with clouds masked in (a) the clearest leaf-off scene (11 Sept.
2002), (b) the leaf-off scene (image a) regression-tree normalized to the leaf-on scene (image
c), (c) the clearest leaf-on scene (12 Dec. 1999), and (d) the leaf-on scene (image c)
regression-tree normalized to the leaf-off scene (image a). All images displayed in Landsat
ETM+ bands 3, 4, and 5 in red, green, and blue, respectively. The color tables for images (a)
and (d) are identical, as are those for images (b) and (c).



differences more than linear regression or histogram matching
because it more closely matches vegetation phenology. These
results are visible in the relative seamlessness of cloud-filled
imagery that displays, for example, ETM+ bands 3, 4, and 5.
These results also support the hypothesis that regression tree
normalization can result in more seamless cloud-filled imagery.

Cloud-filled Landsat imagery can apparently be classified to
land cover and detailed forest formations in complex tropical
landscapes with the methods in this study. This result supports
our second hypothesis. The success of the classifications
probably stems from three main factors: the well-distributed
training data, the use of decision tree classification, and the
ancillary data. First, the well-distributed classification training
data reflected the spectral and spatial variability of each class,
including the variability that stemmed from interdate image
differences, because the training data included cloud-filled
areas. If the training data represent most spectral conditions of
a land-cover class, the decision trees can apparently resolve
some of the spectral incongruities of cloud-filled imagery.
Second, the training data reflected the spatial variability of each
class. Topographic derivatives and other ancillary data help
distinguish land cover and forest types in these landscapes.
Ancillary data probably also helped to detect differences in
forest deciduousness related to disturbance because topography
and road proximity are also related to the spatial patterns of
tropical forest disturbance and regrowth (Helmer, 2000). The
fact that the spatial distributions of land cover and forest
formations are related to topography and other ancillary data
probably also explains why multiseason imagery did not
improve classification accuracy as much as expected.

In this study, neither normalizing nor atmospherically
correcting image data that filled cloud gaps significantly
improved or degraded classification accuracy. This result can
be surprising, because the different normalization methods
usually reduced differences between reference scenes and the
subject image data that filled cloud gaps. A possible
explanation for this result is that decision trees can handle the
spectral heterogeneity of cloud-filled imagery, and normalizing
the imagery that fills cloud gaps increases spectral confusion

for some classes, offsetting gains in accuracy for other classes.
Evidence for this explanation lies in the structures of the
decision trees, the variability in normalization effects on per-
class accuracy, and the differences between classifications with
ancillary data versus those without ancillary data. For a related
study, we analyzed the decision trees that we ultimately used
for mapping land-cover and forest formations for St. Kitts and
Nevis and St. Eustatius, as well as for the Caribbean island of
Grenada (E.H. Helmer et al., unpublished data). The variables
that most commonly appear in the top nodes of the decision
trees are spectral, or they are ancillary variables that affect the
spectral bands, like image topographic shading based on image
sun–target–sensor geometry. This outcome suggests that the
decision trees first spectrally segment the images and then use
the ancillary variables to separate spectrally similar classes.
With such a structure, perhaps the decision trees have one
branch for reference image data and other branches for cloud-
filling data, and these branches span different signature ranges.
Image normalization might make these branches less distinct
by bringing their spectral ranges closer together, increasing
spectral confusion. Though the normalizations reduce spectral
differences between image dates, they may not reduce these
differences enough to cause a complete merging of the different
spectral hierarchies. In the end, the ancillary variables allow the
decision trees to resolve the spectral confusion. As mentioned
earlier, we know that the ancillary data reduce error from
spectral confusion because they improve classification
accuracy (from Kappa coefficients of 0.3–0.6 to values above
0.6 in this study). With spectral data only, some of the mosaic
combinations lead to Kappa coefficients of agreement that are
smaller for normalized imagery than for non-normalized or
atmospherically corrected imagery. Because of the low
accuracy level of all classifications of spectral data alone,
however, this latter observation should be viewed with caution.

Ensuring that the classification training data represented the
spatial and spectral range of each forest formation required
some visual interpretation of the cloud-filled imagery. Imagery
with cloud gaps filled from other image dates is more seamless
for normalizations that use regression trees than for those that
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Reference image for the
cloud-filled image(s) classified

Normalization or correction method applied to image data

Cubist
regression tree
normalization

Image match
histogram
matching

Linear
regression
normalization

DOS
atmospheric
correction

No
normalization
or correction

Sept. 2000 0.64±0.08 0.64±0.08 0.64±0.08 0.64±0.08 0.63±0.08
Feb. 2003 0.67±0.08 0.66±0.08 0.67±0.07 0.66±0.07 0.66±0.07
Feb. 2003, Sept. 2000 0.66±0.07 0.66±0.07 0.64±0.08 0.66±0.07 0.66±0.07
Sept. 2002 (clearest leaf-off) 0.66±0.07 0.69±0.07 0.66±0.08 0.68±0.08 0.65±0.08
Dec. 1999 (clearest leaf-on) 0.71±0.08 0.68±0.07 0.69±0.07 0.70±0.07 0.68±0.08
Sept. 2002, Dec. 1999 (two clearest) 0.72±0.07 0.71±0.07 0.70±0.07 0.71±0.07 0.68±0.07
Feb. 2003, Sept. 2000, Sept. 2002, Dec. 1999 0.70±0.07 0.72±0.07 0.69±0.08 0.70±0.07 0.69±0.07

Note: The result indicates that with well-distributed training data, decision tree classification, and ancillary data the various treatments applied to subject
image data used to fill clouds in reference scenes may not always significantly affect classification accuracy.

Table 2. Kappa coefficients of class agreement (±95% confidence intervals for Kappa) that resulted from classifying different cloud-filled
images and ancillary data did not differ significantly from each other.



use linear regression, histogram matching, or image-based
atmospheric correction. Consequently, normalizing image
dates with regression trees can enhance visual interpretation.
The procedure permitted us to develop fairly seamless cloud-
filled imagery for each of two stages in vegetation phenology.
One cloud-filled image has drought deciduous woody
vegetation in a leaf-on stage, and the other has drought
deciduous vegetation in a leaf-off stage. Together, these two
cloud-filled images permitted us to collect a more
comprehensive training dataset for classification.

The capacity to model complex nonlinear relationships
probably explains why predicting a reference image from a
subject image with regression tree models more closely
matches imagery than do linear regression or histogram
matching. The effects of phenological change on the
relationships between bands from different dates can differ by
class, which results in nonlinear relationships between those
bands. The nonlinearity of regression trees, however, may make
them inappropriate for use in the same way that others have
normalized images in a time series for change detection.
Regression tree models might tend to match changed areas to a
reference date, which would hide land-cover change. In
addition, the success of various normalization approaches
probably depends on the extent of each class in the mutually
cloud-free image parts that supply data for normalization
models. Lastly, we observed during this and previous work
(Helmer and Ruefenacht, 2005) that differences in sun–target–
sensor geometry may negatively affect the success of
regression tree normalization. When choices exist, image sets
dated close to anniversary dates so that sun–target–sensor
geometry is similar may yield better results.

Conclusions
When assembling cloud-filled imagery over Caribbean

island landscapes, regression tree normalization of ETM+
bands 1–5 and 7, NDVI, and the band 4:5 ratio can produce
more seamless imagery than image-based atmospheric
correction or linear methods of radiometric normalization
because it more closely matches vegetation phenology.
Normalizing the data that fill cloud gaps may not affect
classification accuracy when machine learning classifiers are
used in combination with (i) training data that reflect class
spectral and spatial variability (including in cloud-filled areas),
and (ii) relevant ancillary data. At the same time, cloud-filled
imagery assembled with no normalization can be difficult to
visually interpret, which may hinder some applications. In this
study, for example, fairly seamless cloud-filled imagery for
more than one season was vital to distributing the visually
interpreted training data over the extents of deciduous and
semideciduous woody vegetation. In conclusion, when an
application requires visual interpretation of satellite imagery,
normalizing interdate image differences in cloud-filled
imagery, particularly with regression trees, can be an important
enhancement for Landsat ETM+ optical bands.
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